Skip to main content

Math macro command for latex support in markdown

Number and Arrays

command visualization comment
a $a$ A scalar
\va $\va$ A vector, additionally $\vzero, \vone, \vmu, \vnu, \vtheta$ for \vzero, \vone, \vmu, \vnu, \vtheta
\mA $\mA$ A matrix
\tA $\tA$ A tensor
\mI_n $\mI_n$ Identity matrix with $n$ rows and $n$ columns
\mI $\mI$ Identity matrix with dimensionality implied by context
\ve^{(i)} $\ve^{(i)}$ Standard basis vector $[0,\dots,0,1,0,\dots,0]$ with a 1 at position $i$
\text{diag}(\va) $\text{diag}(\va)$ A square, diagonal matrix with diagonal entries given by $\va$
\ra $\ra$ A scalar-valued random variable
\rva $\rva$ A vector-valued random variables
\rmA $\rmA$ A matrix-valued random varialbes

Sets and Graphs

Command Visualization Comment
\sA $\sA$ A set
Note: the command covers sA to sZ but don't no sE since it's expectation
\R $\R$ The set of real numbers
{0, 1} ${0, 1}$ The set containing 0 and 1
{0, 1, \dots, n} ${0, 1, \dots, n}$ The set of all integers between $0$ and $n$
[a, b] $[a, b]$ The real interval including $a$ and $b$
(a, b] $(a, b]$ The real interval excluding $a$ but including $b$
\sA \backslash \sB $\sA \backslash \sB$ Set subtraction, i.e., the set containing the elements of $\sA$ not in $\sB$
\gG $\gG$ A graph

Indexing

Command Visualization Comment
\eva_i $\eva_i$ Element $i$ of vector $\va$, with indexing starting at 1
\eva_{-i} $\eva_{-i}$ All elements of vector $\va$ except for element $i$
\emA_{i,j} $\emA_{i,j}$ Element $i, j$ of matrix $\mA$
\mA_{i, :} $\mA_{i, :}$ Row $i$ of matrix $\mA$
\mA_{:, i} $\mA_{:, i}$ Column $i$ of matrix $\mA$
\etA_{i, j, k} $\etA_{i, j, k}$ Element $(i, j, k)$ of a 3-D tensor $\tA$
\tA_{:, :, i} $\tA_{:, :, i}$ 2-D slice of a 3-D tensor
\erva_i $\erva_i$ Element $i$ of the random vector $\rva$

Linear Algebra Operators

Command Visualization Comment
\mA^\top $\mA^\top$ Transpose of matrix $\mA$
\mA^+ $\mA^+$ Moore-Penrose pseudoinverse of $\mA$
\mA \odot \mB $\mA \odot \mB$ Element-wise (Hadamard) product of $\mA$ and $\mB$
\mathrm{det}(\mA) $\mathrm{det}(\mA)$ Determinant of $\mA$
\sign(x) $\sign(x)$ Sign of a variable $x$
\Tr \mA $\Tr(\mA)$ Trace of a matrix A

Calculus

Command Visualization Comment
\diff y / \diff x $\diff y / \diff x$ Derivative of $y$ with respect to $x$
\frac{\partial y}{\partial x} $\frac{\partial y}{\partial x}$ Partial derivative of $y$ with respect to $x$
\nabla_\vx y $\nabla_\vx y$ Gradient of $y$ with respect to $\vx$
\nabla_\mX y $\nabla_\mX y$ Matrix derivatives of $y$ with respect to $\mX$
\nabla_\tX y $\nabla_\tX y$ Tensor containing derivatives of $y$ with respect to $\tX$
\frac{\partial f}{\partial \vx} $\frac{\partial f}{\partial \vx}$ Jacobian matrix $\mJ \in \R^{m\times n}$ of $f: \R^n \rightarrow \R^m$
\nabla_\vx^2 f(\vx)\text{ or }\mH(f)(\vx) $\nabla_\vx^2 f(\vx)\text{ or }\mH(f)(\vx)$ The Hessian matrix of $f$ at input point $\vx$
\int f(\vx) d\vx $\int f(\vx) d\vx$ Definite integral over the entire domain of $\vx$
\int_\sS f(\vx) d\vx $\int_\sS f(\vx) d\vx$ Definite integral with respect to $\vx$ over the set $\sS$

Probabilities

Command Visualization Comment
\ra \bot \rb $\ra \bot \rb$ The random variables $\ra$ and $\rb$ are independent
\ra \bot \rb \mid \rc $\ra \bot \rb \mid \rc$ They are conditionally independent given $\rc$
P(\ra) $P(\ra)$ A probability distribution over a discrete variable
p(\ra) $p(\ra)$ A probability distribution over a continuous variable, or a variable of unspecified type
\ra \sim P $\ra \sim P$ Random variable $\ra$ has distribution $P$
\E_{\rx \sim P} [ f(x) ] \text{ or } \E f(x) $\E_{\rx \sim P} [ f(x) ] \text{ or } \E f(x)$ Expectation of $f(x)$ with respect to $P(\rx)$
\Var(f(x)) $\Var(f(x))$ Variance of $f(x)$ under $P(\rx)$
\Cov(f(x), g(x)) $\Cov(f(x), g(x))$ Covariance of $f(x)$ and $g(x)$ under $P(\rx)$
H(\rx) $H(\rx)$ Shannon entropy of the random variable $\rx$
\KL(P \Vert Q) $\KL(P \Vert Q)$ Kullback-Leibler divergence of $P$ and $Q$
\mathcal{N}(\vx ; \vmu , \mSigma) $\mathcal{N}(\vx ; \vmu , \mSigma)$ Gaussian distribution over $\vx$ with mean $\vmu$ and covariance $\mSigma$

Functions

Command Visualization Comment
f: \sA \rightarrow \sB $f: \sA \rightarrow \sB$ The function $f$ with domain $\sA$ and range $\sB$
f \circ g $f \circ g$ Composition of the functions $f$ and $g$
f(\vx ; \vtheta) $f(\vx ; \vtheta)$ A function of $\vx$ parametrized by $\vtheta$. Sometimes written as $f(\vx)$ to simplify notation
\log x $\log x$ Natural logarithm of $x$
\sigma(x) $\sigma(x)$ Logistic sigmoid, $\displaystyle \frac{1}{1 + \exp(-x)}$
\zeta(x) $\zeta(x)$ Softplus, $\log(1 + \exp(x))$
| \vx |_p $\Vert \vx \Vert_p$ $L^p$ norm of $\vx$
| \vx | $| \vx |$ $L^2$ norm of $\vx$
x^+ $x^+$ Positive part of $x$, i.e., $\max(0,x)$
\bm{1}_\mathrm{condition} $\bm{1}_\mathrm{condition}$ Is 1 if the condition is true, 0 otherwise

Custom Commands special

Command Visualization Comment
\bm{#1} $\bm{x}$ Bold symbol, e.g., $\boldsymbol{x}$
\sign $\sign$ operator, Sign , $\operatorname{sign}$
\Tr $\Tr$ operator Trace, $\operatorname{Tr}$
\E $\E$ Expectation, $\mathbb{E}$
\KL $\KL$ Kullback-Leibler divergence, $D_\mathrm{KL}$
\NormalDist $\NormalDist$ Gaussian distribution, $\mathcal{N}$
\diag $\diag$ Diagonal matrix, $\mathrm{diag}$
\Ls $\Ls$ Loss function, $\mathcal{L}$
\R $\R$ Real number set, $\mathbb{R}$
\emp $\emp$ Empirical distribution, $\tilde{p}$
\lr $\lr$ Learning rate, $\alpha$
\reg $\reg$ Regularization coefficient, $\lambda$
\rect $\rect$ Rectifier activation, $\mathrm{rectifier}$
\softmax $\softmax$ Softmax function, $\mathrm{softmax}$
\sigmoid $\sigmoid$ Sigmoid function, $\sigma$
\softplus $\softplus$ Softplus function, $\zeta$
\Var $\Var$ Variance, $\mathrm{Var}$
\standarderror $\standarderror$ Standard error, $\mathrm{SE}$
\Cov $\Cov$ Covariance, $\mathrm{Cov}$
\tran $\tran$ Transpose operator, $^\top$
\inv $\inv$ Inverse operator, $^{-1}$
\diff $\diff$ Differential operator, $\mathrm{d}$

Reference

  • Ian Goodfellow's ML book: https://github.com/goodfeli/dlbook_notation/blob/master/notation_example.pdf
  • MathJax: https://docs.mathjax.org/en/latest/input/tex/macros.html