Skip to main content

Math macro command for latex support in markdown

Number and Arrays

commandvisualizationcomment
a$a$A scalar
\va$\va$A vector, additionally $\vzero, \vone, \vmu, \vnu, \vtheta$ for \vzero, \vone, \vmu, \vnu, \vtheta
\mA$\mA$A matrix
\tA$\tA$A tensor
\mI_n$\mI_n$Identity matrix with $n$ rows and $n$ columns
\mI$\mI$Identity matrix with dimensionality implied by context
\ve^{(i)}$\ve^{(i)}$Standard basis vector $[0,\dots,0,1,0,\dots,0]$ \vawith a 1 at position $i$
\text{diag}(\va)$

\text{diag}(\va)$
A square, diagonal matrix with diagonal entries given by $\va$
\ra$\ra$A scalar-valued random variable
\rva$\rva$A vector-valued random variables
\rmA$\rmA$A matrix-valued random varialbes

Sets and Graphs

CommandVisualizationComment
\sA$\sA$A set
Note: the command covers sA to sZ but don't no sE since it's expectation
\R$\R$The set of real numbers
{0, 1}${0, 1}$The set containing 0 and 1
{0, 1, \dots, n}${0, 1, \dots, n}$The set of all integers between $0$ and $n$
[a, b]$[a, b]$The real interval including $a$ and $b$
(a, b]$(a, b]$The real interval excluding $a$ but including $b$
\sA \backslash \sB$\sA \backslash \sB$Set subtraction, i.e., the set containing the elements of $\sA$ not in $\sB$
\gG$\gG$A graph

Indexing

CommandVisualizationComment
\eva_i$\eva_i$Element $i$ of vector $\va$, with indexing starting at 1
\eva_{-i}$\eva_{-i}$All elements of vector $\va$ except for element $i$
\emA_{i,j}$\emA_{i,j}$Element $i, j$ of matrix $\mA$
\mA_{i, :}$\mA_{i, :}$Row $i$ of matrix $\mA$
\mA_{:, i}$\mA_{:, i}$Column $i$ of matrix $\mA$
\etA_{i, j, k}$\etA_{i, j, k}$Element $(i, j, k)$ of a 3-D tensor $\tA$
\tA_{:, :, i}$\tA_{:, :, i}$2-D slice of a 3-D tensor
\erva_i$\erva_i$Element $i$ of the random vector $\rva$

Linear Algebra Operators

CommandVisualizationComment
\mA^\top$\mA^\top$Transpose of matrix $\mA$
\mA^+$\mA^+$Moore-Penrose pseudoinverse of $\mA$
\mA \odot \mB$\mA \odot \mB$Element-wise (Hadamard) product of $\mA$ and $\mB$
\mathrm{det}(\mA)$\mathrm{det}(\mA)$Determinant of $\mA$
\sign(x)$\sign(x)$Sign of a variable $x$
\Tr \mA$\Tr(\mA)$Trace of a matrix A

Calculus

CommandVisualizationComment
\diff y / \diff x$\diff y / \diff x$Derivative of $y$ with respect to $x$
\frac{\partial y}{\partial x}$\frac{\partial y}{\partial x}$Partial derivative of $y$ with respect to $x$
\nabla_\vx y$\nabla_\vx y$Gradient of $y$ with respect to $\vx$
\nabla_\mX y$\nabla_\mX y$Matrix derivatives of $y$ with respect to $\mX$
\nabla_\tX y$\nabla_\tX y$Tensor containing derivatives of $y$ with respect to $\tX$
\frac{\partial f}{\partial \vx}$\frac{\partial f}{\partial \vx}$Jacobian matrix $\mJ \in \R^{m\times n}$ of $f: \R^n \rightarrow \R^m$
\nabla_\vx^2 f(\vx)\text{ or }\mH(f)(\vx)$\nabla_\vx^2 f(\vx)\text{ or }\mH(f)(\vx)$The Hessian matrix of $f$ at input point $\vx$
\int f(\vx) d\vx$\int f(\vx) d\vx$Definite integral over the entire domain of $\vx$
\int_\sS f(\vx) d\vx$\int_\sS f(\vx) d\vx$Definite integral with respect to $\vx$ over the set $\sS$

Probabilities

CommandVisualizationComment
\ra \bot \rb$\ra \bot \rb$The random variables $\ra$ and $\rb$ are independent
\ra \bot \rb \mid \rc$\ra \bot \rb \mid \rc$They are conditionally independent given $\rc$
P(\ra)$P(\ra)$A probability distribution over a discrete variable
p(\ra)$p(\ra)$A probability distribution over a continuous variable, or a variable of unspecified type
\ra \sim P$\ra \sim P$Random variable $\ra$ has distribution $P$
\E_{\rx \sim P} [ f(x) ] \text{ or } \E f(x)$\E_{\rx \sim P} [ f(x) ] \text{ or } \E f(x)$Expectation of $f(x)$ with respect to $P(\rx)$
\Var(f(x))$\Var(f(x))$Variance of $f(x)$ under $P(\rx)$
\Cov(f(x), g(x))$\Cov(f(x), g(x))$Covariance of $f(x)$ and $g(x)$ under $P(\rx)$
H(\rx)$H(\rx)$Shannon entropy of the random variable $\rx$
\KL(P \Vert Q)$\KL(P \Vert Q)$Kullback-Leibler divergence of $P$ and $Q$
\mathcal{N}(\vx ; \vmu , \mSigma)$\mathcal{N}(\vx ; \vmu , \mSigma)$Gaussian distribution over $\vx$ with mean $\vmu$ and covariance $\mSigma$

Functions

CommandVisualizationComment
f: \sA \rightarrow \sB$f: \sA \rightarrow \sB$The function $f$ with domain $\sA$ and range $\sB$
f \circ g$f \circ g$Composition of the functions $f$ and $g$
f(\vx ; \vtheta)$f(\vx ; \vtheta)$A function of $\vx$ parametrized by $\vtheta$. Sometimes written as $f(\vx)$ to simplify notation
\log x$\log x$Natural logarithm of $x$
\sigma(x)$\sigma(x)$Logistic sigmoid, $\displaystyle \frac{1}{1 + \exp(-x)}$
\zeta(x)$\zeta(x)$Softplus, $\log(1 + \exp(x))$
| \vx |_p $| \vx |_p$$L^p$ norm of $\vx$
| \vx | $| \vx |$$L^2$ norm of $\vx$
x^+$x^+$Positive part of $x$, i.e., $\max(0,x)$
\bm{1}_\mathrm{condition}$\bm{1}_\mathrm{condition}$Is 1 if the condition is true, 0 otherwise

Custom Commands special

CommandVisualizationComment
\bm{#1}$\bm{x}$Bold symbol, e.g., $\boldsymbol{x}$
\sign$\sign$operator, Sign , $\operatorname{sign}$
\Tr$\Tr$operator Trace, $\operatorname{Tr}$
\E$\E$Expectation, $\mathbb{E}$
\KL$\KL$Kullback-Leibler divergence, $D_\mathrm{KL}$
\NormalDist$\NormalDist$Gaussian distribution, $\mathcal{N}$
\diag$\diag$Diagonal matrix, $\mathrm{diag}$
\Ls$\Ls$Loss function, $\mathcal{L}$
\R$\R$Real number set, $\mathbb{R}$
\emp$\emp$Empirical distribution, $\tilde{p}$
\lr$\lr$Learning rate, $\alpha$
\reg$\reg$Regularization coefficient, $\lambda$
\rect$\rect$Rectifier activation, $\mathrm{rectifier}$
\softmax$\softmax$Softmax function, $\mathrm{softmax}$
\sigmoid$\sigmoid$Sigmoid function, $\sigma$
\softplus$\softplus$Softplus function, $\zeta$
\Var$\Var$Variance, $\mathrm{Var}$
\standarderror$\standarderror$Standard error, $\mathrm{SE}$
\Cov$\Cov$Covariance, $\mathrm{Cov}$
\tran$\tran$Transpose operator, $^\top$
\inv$\inv$Inverse operator, $^{-1}$
\diff$\diff$Differential operator, $\mathrm{d}$

Reference

  • Ian Goodfellow's ML book: https://github.com/goodfeli/dlbook_notation/blob/master/notation_example.pdf
  • MathJax: https://docs.mathjax.org/en/latest/input/tex/macros.html